Identifying Constant of Proportionality (Tables) Name:
Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathrm{kx}$
Ex)

Glasses of Lemonade (x)	5	8	2	7	4
Lemons Used (y)	20	32	8	28	16

For every glass of lemonade there were \qquad lemons used.
1)

Chocolate Bars (x)	5	3	6	9	8
Calories (y)	1,300	780	1,560	2,340	2,080

Every chocolate bar has \qquad calories.
2)

Pounds of Beef Jerky (x)	5	6	10	3	8
Price in dollars (y)	55	66	110	33	88

For every pound of beef jerky it cost \qquad dollars.
3)

Time in minute (x)	4	5	2	3	9
Distance traveled in meters (y)	64	80	32	48	144

Every minute \qquad meters are travelled.
4)

Boxes of Candy (x)	5	6	9	2	10
Pieces of Candy (y)	80	96	144	32	160

For every box of candy you get \qquad pieces.
5)

Concrete Blocks (x)	3	8	7	10	5
weight in kilograms (y)	15	40	35	50	25

Every concrete block weighs \qquad kilograms.
6)

Lawns Mowed (x)	8	5	10	4	2
Dollars Earned (y)	248	155	310	124	62

For every lawn mowed \qquad dollars were earned.
7)

Phone Sold (x)	8	2	3	6	7
Money Earned (y)	272	68	102	204	238

Every phone sold earns \qquad dollars.
8)

Enemies Destroyed (x)	4	9	2	10	6
Points Earned (y)	116	261	58	290	174

Every enemy destroyed earns \qquad points.

Determine the constant of proportionality for each table. Express your answer as $\mathbf{y}=\mathbf{k x}$
Ex)

Glasses of Lemonade (x)	5	8	2	7	4
Lemons Used (y)	20	32	8	28	16

For every glass of lemonade there were \qquad lemons used.
1)

Chocolate Bars (x)	5	3	6	9	8
Calories (y)	1,300	780	1,560	2,340	2,080

Every chocolate bar has 260 calories.
2)

Pounds of Beef Jerky (x)	5	6	10	3	8
Price in dollars (y)	55	66	110	33	88

For every pound of beef jerky it cost _11_ dollars.
3)

Time in minute (x)	4	5	2	3	9
Distance traveled in meters (y)	64	80	32	48	144

Every minute 16 meters are travelled.
4)

Boxes of Candy (x)	5	6	9	2	10
Pieces of Candy (y)	80	96	144	32	160

For every box of candy you get __16_ pieces.
5)

Concrete Blocks (x)	3	8	7	10	5
weight in kilograms (y)	15	40	35	50	25

Every concrete block weighs _ 5 kilograms.
6)

Lawns Mowed (x)	8	5	10	4	2
Dollars Earned (y)	248	155	310	124	62

For every lawn mowed _ 31 dollars were earned.
7)

Phone Sold (x)	8	2	3	6	7
Money Earned (y)	272	68	102	204	238

Every phone sold earns _34_dollars.
8)

Enemies Destroyed (x)	4	9	2	10	6
Points Earned (y)	116	261	58	290	174

Every enemy destroyed earns 29 points.

Answers

Ex. \qquad $y=4 x$

1. $y=260 x$
2. $\mathbf{y}=11 \mathbf{x}$
3. $y=16 x$
4. $\mathbf{y}=16 \mathrm{x}$
5. $\mathbf{y}=\mathbf{5 x}$
6. $\mathbf{y}=31 \mathbf{x}$
7. $\mathbf{y}=34 \mathrm{x}$
8. $\mathbf{y}=\mathbf{2 9 x}$
